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Abstract—This paper investigates heuristics to control and
coordinate the concurrent movement of multiple sinks for lifetime
maximization in a wireless sensor network (WSN). We have
developed a centralized heuristic that runs in polynomial time
given the solution to the linear program from [1] which provides
a provable upper bound to the problem of controlled mobility of
multiple sinks. The centralized heuristic solves the sink movement
and placement problem obtaining lifetimes that are within 2%

of the upper bound. We also define a deployable distributed
heuristic for coordinating the motion of multiple sinks through
the network. The performance comparison of our heuristics with
static sink placement and with random sink mobility shows
that our distributed heuristic achieves network lifetimes that are
remarkably close to the optimum ones, resulting in significant
lifetime improvements over random sink mobility (+77.7%) and
statically deployed sinks (+382.4%).

I. INTRODUCTION

Recent research stresses the importance of wireless sensor

networks (WSNs) for monitoring and interacting with the

physical world. Large numbers of battery-operated tiny wire-

less sensing devices can now be interspersed in a wide variety

of environments (e.g., underground [2], underwater [3], in the

wilderness [4], in the house [5], etc). They sense relevant

data and transmit them to designated collection points (the

sinks) for further relay or analysis. Given the inaccessibility

of the sensor nodes and their structural and architectural sim-

plicity, their batteries cannot easily be replaced or recharged.

Therefore, energy conservation is a key issue in the design

of the devices themselves, and especially in the design of the

communication protocols used for data transmission from the

sensors to the sinks. Given the nature of the sensor nodes,

WSN protocol designers face many challenges. Among the

most notorious problems, two concern static placement of

the sinks. Specifically, when the sinks are statically deployed

the convergence of data from multiple sensors to the sink

(data funneling) reduces network performance considerably.

Furthermore, the nodes that are closer to the sink have to

act as relays for data packets from all other nodes in the

network. As a consequence, their energy is soon depleted and

the sink becomes unable to receive any further packet (sink

neighborhood problem). These problems could be obviated

by moving some of the network components, specifically the

sinks. (A host of recent literature, surveyed in [6], shows that

moving sensor nodes or relays is not as effective as moving

sinks.) Many initial works on this topic [6]–[9] present ana-

lytical models as well as distributed heuristics for controlled

single sink mobility that clearly show the power of moving the

sink to places that are dictated by current network conditions.

The results obtained by controlling the mobility of one sink

are so encouraging that one wonders if and how much more

improvement can be obtained by deploying multiple mobile

sinks. Intuitively, having multiple data collectors will reduce

the amount of data handled by a single sink, and thus the data

funneling, and the rate at which the sink neighbors deplete

their energy. More sinks also result in shorter routes from

sensors to their closest sink. As a consequence, we expect the

energy consumption and data packet latency to be lower, and

the resulting network lifetime higher than when a single sink

is moving.

In this paper we investigate the problem of controlling

the concurrent and coordinated mobility of multiple sinks for

prolonging the lifetime of a WSN. We describe a centralized

heuristic that runs in polynomial time given the solution

to a linear program (LP) defined in [1] which provides a

provable upper bound to the problem of controlled mobility of

multiple sinks. This heuristic scales to realistic network sizes

and produces sink schedules that are within 2% of the upper

bound provided by this LP. We also define a deployable dis-

tributed heuristic for controlling and coordinating the motion

of multiple sinks through the network. In this heuristic, sinks

periodically evaluate whether to move or not depending on the

expected lifetime improvement that can be obtained by such

a move. By gathering network status information efficiently,

sinks can make this decision locally and share it with fellow

sinks. So, sinks coordinate movement decisions.

Through simulations, we compare the performance of our

heuristics with that of static sink placement and of random

sink movements. Simulation-based experimental results show

that our distributed heuristic achieves network lifetimes that

are remarkably close to the optimum ones (within 25.3% of

the centralized upper bound in all considered scenarios and

experiments), resulting in significant lifetime improvements

(from 20.6% to 77.7%) over random sink mobility. The

lifetime improvements with respect to optimally placed static

sinks can be as high as 382.4%. Finally, the investigation of

route length and the residual energy distribution at network

lifetime confirms that controlled and coordinated mobility of



multiple sinks is a practical tool for significantly improving

the overall performance of a WSN.

II. PROBLEM FORMULATION

The scenario we consider is made up of two tiers: One that

comprises a small number s of mobile sinks deployed to col-

lect data from the sensors, and the other that contains a large

number of resource-constrained sensor nodes that monitor the

deployment area. The sinks, e.g., mobile robots or unmanned

flying drones, roam through the network moving among a

finite number of designated sink sites.1 Mobile sinks are

resource-rich nodes, i.e., they are not particularly constrained

in terms of energy, mobility, computational resources, and

storage. We assume that they have multiple radio interfaces

so that they can communicate with the sensors and among

themselves. The second tier of the network is composed of

a set N of sensor nodes (or sensors for short). Each sensor

p ∈ N has an initial energy ep. It generates data at a rate

of rp packets per second. These packets are routed either

directly or via a multi-hop path to the sink sojourning at the

closest site (in terms of number of hops) according to a given

routing protocol. Sensor p requires αp joules per packet for

sensing, creating, and transmitting packets it generates locally.

It requires βp joules per packet to receive and relay a packet

for another sensor.

Since the sinks are mobile, the sensors must learn which is

the closest sink that is available to receive their packets. More

specifically, at any time, a sink is either at a sink site or it is

moving. If it is at a sink site, it can be either active, meaning

it is available to receive sensor data, or inactive. When a sink

at a sink site becomes active, it must broadcast its availability

to the sensors. Similarly, when it becomes inactive, it must

broadcast its unavailability. These broadcasts require energy

from the sensors and are sink-site dependent. An active sink

must deactivate before moving. We require that at least one

sink is active at all times. This design choice allows the sensors

to always have a destination for their packets. This has the

benefit of avoiding high packet end-to-end latencies (nodes

do not need to buffer packets while the sinks are moving).

Our objective is to find a schedule of sink movements that

maximizes the network lifetime, which is reached when the

first sensor runs out of battery power.

A more formal description of our problem follows. Let V be

the set of possible sink sites and let C be a set of all possible

sink configurations. A configuration is a subset of 1 ≤ k ≤ s
sites in V where there are active sinks available to receive

sensor data. Let ypwc be the percentage of traffic sensor p ∈ N
sends to a sink at site w ∈ V when the sink configuration is

c ∈ C. When sensor p ∈ N is sending some traffic to sink

site w ∈ V , let ρpqw be the percentage of that p-to-w traffic

sent through sensor q ∈ N . This allows arbitrarily complex

routing strategies provided each sensor decides where to send

data and how to route it based only on the sink configuration.

1 The case where the sink can sojourn anywhere in the deployment area
easily reduces to the case of a finite set of sink sites given that the area can
be partitioned into regions where sinks’ neighbors do not change.

In configuration c, the ρpqw and ypwc determine the routes

for the data that sensor p generates, and hence the energy

intermediate nodes q consume relaying p’s data.

The sink configuration changes whenever a sink becomes

active or inactive, triggering a reconfiguration broadcast for

each sink that changes status. Suppose we wish to transition

from configuration c1 ∈ C to c2 ∈ C. Because we require at

least one active sink at all times, we may require intermediate

configurations to make the transition. We call configurations

we wish to use for a while, such as c1 and c2, major config-

urations, and we call intermediate configurations used only to

move between major configurations transient configurations.

We require that transient configurations hold for ttrans sec-

onds and that major configurations hold for tmin ≥ ttrans

seconds. For example, we might prefer to hold major con-

figurations longer to allow routes to stabilize and run for

enough time to justify the configuration cost, or we may wish

to minimize sink movement for other reasons (e.g., a fragile

environment). By varying the size of tmin, one can explore

the trade-offs between sink mobility and network lifetime.

Our goal is to determine an ordered set of major config-

urations Cm = c0, c1, . . . , cℓ and a time ti ≥ tmin for each

selected configuration ci. We are allowed to insert transient

configurations with ti = ttrans in order to provide a most

direct transition between two major configurations. Let Ct

be the set of transient configurations. Every sensor must

have enough initial energy to support all the selected major

and transient configurations for the selected amount of time

and to support all the reconfiguration (activation/deactivation)

broadcasts from the sinks. We wish to find a schedule that

maximizes the network lifetime:
∑

i∈Cm∪Ct
ti.

III. CENTRALIZED HEURISTIC

Basagni et. al. [1] define a linear program that provides

an upper bound on the maximum lifetime. The solution to

the LP provides a time t∗c ≥ 0 for a polynomial number of

configurations c ∈ C, where t∗c′ = 0 for all the configurations

c′ /∈ C. Ignoring reconfiguration broadcast costs and assuming

configurations can change instantaneously, then each config-

uration c can run t∗c time before the first sensor fails. This

provides an (unachievable) upper bound on the lifetime of a

centralized heuristic. Our centralized heuristic solves the full

problem, with correct configuration transitions and broadcast

costs. Given the solution to the LP, the high-level operations

for the centralized heuristic are as follows:

1. Let B = tmin.

2. Let C ⊆ C = {c ∈ C|t∗c ≥ B}. That is, we select the set

of configurations for which the LP assigns a time of at least

B (initially tmin).

3. Order the configurations in C, preferably with more closely-

related configurations near each other.

4. Compute transient configurations between each pair of

adjacent configurations.

5. Solve another final LP (LPF) to adjust the times for each

configuration, enforce minimum times on configurations, and

account for sink-movement broadcast costs.



6. If LPF is infeasible, increase B (e.g., to allow removal of

the next-shortest configuration) and return to step 2.

Before describing the steps in more detail, we first consider

transient states. Because sinks require time to move between

sink sites and because we require at least one active sink at

all times, we forbid certain types of transitions that appear to

“teleport” sinks. A transition between configuration c1 ∈ C to

configuration c2 ∈ C is legal if |c2 − c1| ≤ s − |c1|. That is,

the number of sites that receive new active sinks in the new

configuration must not exceed the number of inactive sinks in

the preceding configuration. The inactive sinks can move to

the new sites during the time configuration c1 holds.

We can transition between any pair of configurations using

at most two intermediate configurations. Suppose we wish to

transition from configuration c1 ∈ C to c2 ∈ C. If either is a

subset of the other, we can transition directly by (de)activating

the appropriate set of sinks. If c1 and c2 have a site in common

or either has fewer than s sites, then we need only one transient

configuration. It contains the common (unchanging) sites plus

some new (c2) sites to be occupied by sinks inactive in c1 plus

some old (c1) sites occupied by sinks that will be be inactive in

c2. We need two configurations only when c1 and c2 both have

s sites with none shared. In the first transient configuration, a

subset of sinks from c1 move while the others remain active.

In the second transient configuration, the traveling sinks arrive

at a subset of the new sites while those from the first transient

state deactivate to move.

We now consider each step of the centralized algorithm,

starting with step 3. We use a simple traveling salesperson

(TSP) model. Two (ordered) configurations ci, cj ∈ C have

distance 1 plus the minimum number of intermediate con-

figurations needed to implement the transition. We wish to

find a traveling salesman path (not a closed tour) among

the chosen configurations. The optimal TSP minimizes the

number of intermediate configurations we must add, which

heuristically minimizes the amount of time spent in these

added configurations. These are tiny and easy problems for

the free TSP code Concorde [10]. However, one could also

use a polynomial-time approximation algorithm for TSP such

as Christofides’ heuristic [11].

In step 4, suppose we wish to compute the transition

states between two states ci and ci+1 that are adjacent in

the ordering computed in step 3. We concentrate on the

cases that require 2 transient steps, since the other cases

are almost always completely determined. There are many

possible pairs of intermediate states. We must choose which

sinks move first, and where they move to. The initial LP

chooses a set of configurations for which the vectors of energy

costs for each sensor (weighted by t∗i ) pack well into the

vector of initial sensor energies. Ideally, we would like the

transient configurations to pack well as a group. However,

this would be a difficult vector optimization problem. Instead,

we try to keep the transient configurations between a pair of

major configurations as close to these major configurations as

possible. We hope, then, that they will pack well, as the major

configurations do.

To create the transient configurations between major con-

figurations ci and ci+1, we first consider configuration ci. We

estimate the routing distance between each pair of sink sites

in ci. We then find a minimum-weight maximum-cardinality

matching in the complete graph with a node for each site in

ci, and edges weighted by this pairwise distance. We then

pick an element from each matched pair arbitrarily and move

this set of sinks M . If there are an odd number of sinks, the

unmatched sink can move either first or second. Our hope is

that if sites vi and vj are matched, the nodes sending to vi

will be instead redirected to vj (and vice-versa) maintaining a

nodal energy consumption approximating the consumption in

configuration ci. We then compute a similar matching in ci+1

and use that to pick the new locations L for the sinks from

sites M to move to. So the transient configurations are ci−M
and L.

We now consider the final LP. Because we have selected

the precise set of configurations (steps 2 to 4), we now no

longer have to allow for zero values of tc. So we can enforce

minimum times for configurations. Because we know the order

of the configurations, we can account for broadcast costs.

Specifically, each sink in the initial configuration c1 must

broadcast its activation. Moving between ci and ci+1, all sink

sites in ci−ci+1 must broadcast their deactivation and all sinks

in ci+1 − ci must broadcast their activation. Each broadcast

from a sink site w ∈ V has a potentially different energy cost

for each sensor. Let γp be the total energy cost for sensor

p for all broadcasts associated with the specific sequence of

configurations. Let Ct be the set of transient configurations we

compute in step 4. Then the final LP, called LPF, is as follows:

maximize
∑

c∈C∪Ct

tc

subject to:

∑

c∈C∪Ct



αprptc +
∑

q∈N,w∈V

rqβpρqpwyqwctc



 ≤ ep − γp

∀p ∈ N
tc ≥ tmin ∀c ∈ C
tc = ttrans ∀c ∈ Ct.

The first constraints require all sensors to be alive through-

out the network lifetime. Given a sensor p ∈ N and a

configuration c ∈ C ∪ Ct, the expression in the parentheses

on the left side of the constraint for sensor p gives its energy

consumption while the system is in configuration c. The right-

hand side is the total energy sensor p has after all broadcast

energy costs. The second and third constraints guarantee that

the major configurations hold for at least tmin seconds, and

intermediate configurations for exactly ttrans seconds.

We expect our centralized heuristic to work well when tmin

is significantly greater than ttrans. In this case, the transitions

between major configurations are relatively minor compared

to the time major configurations hold. Intuitively, given an

ordering of major configurations, we slice pieces out of the

start/end of the major configurations to insert the transitions.



IV. DISTRIBUTED HEURISTICS

We consider mobile sinks as resource-rich nodes, in that

they have no constraints in terms of energy, mobility, compu-

tational resources, storage and communications. The sinks are

multi-radio nodes capable of communicating with the sensors

for data collection and among themselves for sharing their

view of the network. The s > 1 sinks perform an initial

training at network set up. They travel to each sink site and

flood to all sensors the request to return test packets according

to the specific routing protocol in use. Each test packet carries

information about the route followed from its source to the

sink at that site. (This training can be performed by one sink,

or sinks can divide the sites among themselves, and eventually

they share the collected information.) After receiving a few test

packets, a sink sojourning at site w is able to estimate, for each

node p, the fraction of packets generated by source node q that

will be relayed by p when q transmits to a sink at that site.

(i.e., the sink is able to estimate the ρqpw). During the training

phase, sensor nodes also learn other useful information (e.g.,

the hop distance from the sink). They send this information to

the sink in the test packet, so the trained sink can determine

how each sensor will partition its traffic among the active sinks

in each possible configuration.

After the training phase, each of the s sinks chooses a

unique site in V and floods packets to the nodes advertising

its current location, thus allowing nodes to set up routes. Node

energy is divided into levels. When a node decreases its energy

from a level to a lower one, it piggybacks this information on

a data packet that is then sent to the closest sink. This allows

the sink to estimate the residual energy of the sensors sending

packets to it. A sink can also estimate the data rate of each

sensor transmitting to it. The sinks share this information with

each other. Periodically (i.e., every tmin) each sink decides

whether to move or not. Before doing so, it waits for a random

time ≪ tmin to de-synchronize sink decisions. After this

time, based on its current information about the status of the

network (energy level of the sensors, the traffic they handle

and which sink is currently at, or traveling to, what site) the

sink computes the expected network lifetime obtainable by

moving to an unoccupied site. If sites exist such that moving

to one of those sites would extend the network lifetime more

than δtmin beyond the lifetime obtainable by staying at the

current site, the sink performs the following operations: 1) It

communicates to the sensors currently reporting to it that it is

on the move, shutting down the routes to its current site (sink

deactivation); 2) It chooses the site moving to which induces

the maximum expected network lifetime; 3) It communicates

to all the other sinks that it has decided to move to the selected

new site; 4) Moves to the new site, and 5) Upon arriving at

the new site sends a routing packet for establishing new routes

from nearby sensor nodes to the site (sink activation).

For the purpose of comparing our distributed heuristic with

a solution corresponding to random mobility we also consider

the following sink mobility scheme, termed RND: Every tmin

seconds each sink decides whether to move or not, selecting

the next site among all possible unoccupied sites and its

current site randomly. A sink communicates its decision to

its peers, so that no two sinks go to the same site. Route

management happens as for our distributed heuristic.

V. PERFORMANCE EVALUATION

We compare the proposed centralized (CEN) and distributed

(DIS) heuristics to an upper bound for an optimal solution

(OPT) [1], to random mobility (RND) and to the case where

sinks are static and optimally placed (STATIC). We consider

the following realistic scenarios: 400 wireless sensor nodes

are deployed on a 20 × 20 grid over a square deployment

area of side L = 475m. Each node transmission radius is

25m, so each node has at most 4 neighbors. The initial energy

of each sensor is 50J. Nodes generate packets of 512B at

a rate of 0.5bps. These packets are sent to the closest sink

using (hop-based) shortest path routing. The channel data

rate is 250Kbps. The transmission power and the receiving

power are 0.0144W and 0.0125W, respectively, according

to the specifications of the TR 1000 radio transceiver from

RF Monolithics. Sinks are free to move from any of the sites

of a 4×4 and 8×8 grid to any other site of the grid. We vary the

number of sinks in the range [2, 8]. Protocol related parameters

are configured as follows. The parameter tmin ranges in the

set {50, 100, 250}Ks. Parameter ttrans is equal to 10Ks. The

threshold δ that governs a sink movement decision is set to 0.1.

Nodal energy is partitioned into 40 levels, each being 2.5%
of the initial energy. Our results consider the energy nodes

expend during the sink training phase as well as that needed

for route maintenance, and sink activation/deactivation. We ran

100 experiments for each displayed value, which achieves a

95% confidence level within a 5% precision.

Our experiments concern the following metrics: 1) Network

lifetime, defined as the time till the “death” of the first sensor

because of energy depletion; 2) Distribution of the nodal

residual energy at lifetime, and 3) route length. We consider

how each is affected by different mobility schemes and by the

number of mobile sinks.

Tables I and II show the network lifetime (in millions of

seconds) induced by the various protocols when varying tmin,

the number s of sinks, and the number of sink sites. Each

table entry shows the absolute lifetime and the percentage

increase with respect to OPT (in parenthesis). We observe

that the centralized heuristic CEN achieves network lifetimes

that are remarkably close to the optimum. The gap from OPT

is always below 2%. Our centralized heuristic starts from the

set of (good) configurations that are produced by OPT. We

observe that OPT spends the majority of time on some of these

configurations which are particularly effective in balancing the

traffic among the sinks, reducing the route length, and thus the

overall network load and the rate at which nodes (especially

those around the sinks) consume energy. These configuration

combinations stress the network nodes quite evenly. CEN

uses these same configurations adding intermediate ones. It

selects the times the sinks spend in each configuration by

solving LPF which forces each selected configuration to last



Table I
LIFETIME (% GAP FROM OPT), 4 × 4 GRID

s tmin OPT CEN DIS RND STATIC

2 50K 46.71 46.6 (0.2) 44.1 (5.5) 29 (37.9) 11.1 (76.2)
100K 46.71 46.6 (0.2) 43.8 (6.2) 28.8 (38.3) 11.1 (76.2)
250K 46.71 46.5 (0.4) 43.4 (7) 27.4 (41.3) 11.1 (76.2)

3 50K 61.14 61 (0.2) 54 (11.6) 38.2 (37.5) 14.8 (75.8)
100K 61.14 61 (0.2) 53.3 (12.8) 37.6 (38.5) 14.8 (75.8)
250K 61.14 60.9 (0.4) 52.1 (14.7) 35.4 (42.1) 14.8 (75.8)

4 50K 75.94 75.8 (0.1) 58.5 (22.9) 45.6 (39.9) 19.1 (74.8)
100K 75.94 75.8 (0.1) 57.9 (23.7) 44.7 (41.1) 19.1 (74.8)
250K 75.94 75.7 (0.3) 57.8 (23.8) 42.2 (44.4) 19.1 (74.8)

5 50K 82.42 82 (0.5) 62.9 (23.6) 50.8 (38.3) 22.3 (72.9)
100K 82.42 82 (0.5) 62.4 (24.2) 50.2 (39) 22.3 (72.9)
250K 82.42 81.9 (0.6) 61.5 (25.3) 48.5 (41.1) 22.3 (72.9)

6 50K 84.97 84.9 (0.1) 67.9 (20) 55.6 (34.5) 28.8 (66.1)
100K 84.97 84.9 (0.1) 67.5 (20.5) 55 (35.2) 28.8 (66.1)
250K 84.97 84.9 (0.1) 67.3 (20.7) 53.7 (36.8) 28.8 (66.1)

7 50K 87.29 87.2 (0.1) 73.2 (16.1) 60.2 (31) 33.7 (61.3)
100K 87.29 87.2 (0.1) 72.9 (16.4) 59.7 (31.6) 33.7 (61.3)
250K 87.29 87.2 (0.1) 72.4 (17) 58.1 (33.4) 33.7 (61.3)

8 50K 88.96 88.9 (≈0) 76.5 (14) 63.4 (28.7) 45.2 (49.2)
100K 88.96 88.9 (≈0) 76.1 (14.4) 63.1 (29) 45.2 (49.2)
250K 88.96 88.9 (≈0) 75.4 (15.2) 61.6 (30.7) 45.2 (49.2)

Table II
LIFETIME (% GAP FROM OPT), 8 × 8 GRID

s tmin OPT CEN DIS RND STATIC

2 50K 79.51 78.8 (0.9) 68.5 (13.8) 39.2 (50.7) 14.2 (82.1)
100K 79.51 78.8 (0.9) 67.8 (14.7) 39.2 (50.7) 14.2 (82.1)
250K 79.51 78.4 (1.4) 64 (19.5) 38 (52.2) 14.2 (82.1)

3 50K 105.9 105.2 (0.6) 90.1 (14.9) 50.7 (52.1) 20.8 (80.3)
100K 105.9 105.3 (0.5) 89.3 (15.6) 50.7 (52.1) 20.8 (80.3)
250K 105.9 105.2 (0.6) 87.6 (17.2) 49.3 (53.4) 20.8 (80.3)

4 50K 131.4 130.6 (0.6) 106.4 (19) 63.4 (51.7) 27.7 (78.9)
100K 131.4 130.6 (0.6) 105.7 (19.5) 63.6 (51.6) 27.7 (78.9)
250K 131.4 130.5 (0.6) 102.5 (22) 61.5 (53.2) 27.7 (78.9)

5 50K 150.1 149.2 (0.6) 120 (20) 75.6 (49.6) 34.3 (77.1)
100K 150.1 149.2 (0.6) 118.8 (20.8) 75.9 (49.4) 34.3 (77.1)
250K 150.1 149.2 (0.6) 117 (22) 73.9 (50.7) 34.3 (77.1)

at least tmin. The time spent by the sinks in each major

configuration might, in principle, differ substantially from

corresponding times in OPT. However, we notice that those

good configurations where OPT sends the sinks for the most

time are also those where CEN spends the vast majority

of time. This is the natural consequence of OPT and CEN

being optimization formulations. The LPF in CEN optimizes

the lifetime and deems useful to spend long times in those

good configurations where traffic is delivered with low energy

consumption and the energy toll is balanced among the nodes,

i.e., the good configurations identified by OPT. The additional

configurations in which CEN spends also a significant amount

of time are then properly selected not to stress on areas of the

networks where the energy has already been depleted by the

main configurations, and to instead drain energy from all the

regions at high residual energy in the network. This justifies

the near-optimal performance of the centralized heuristic.

The distributed heuristic DIS is aware of the residual

energy at all the network nodes because of the exchange of

information among the sinks. Based on this (approximate)

knowledge and the nodal data rate knowledge, DIS selects

configurations that balance network load and nodal energy

consumption. This traffic and energy-aware approach pays off

in terms of network lifetime, which is always within a 25.3%
gap from OPT’s lifetime. Moreover, the improvement with

respect to STATIC is as high as fourfold, which stresses the

goodness of exploiting sink mobility.

Sink mobility is advantageous even with strategies like RND

that use no nodal status information. Random movements of

the sinks double the network lifetime with respect to STATIC.

We also observe that OPT and the other heuristics induce

longer lifetimes when the number of sinks increases. This

is because the network traffic is partitioned among a larger

set of sinks, sink neighbors receive fewer packets, routes are

shorter and the overall energy consumption is lower. However,

we notice lifetime improvements which are not linear in the

number of sinks. In other words, having two sinks does not

double lifetime compared to one sink. Having three sinks does

not triple lifetime, and so on. This is evident in Table I,

which shows that deploying 8 sinks only leads to a 17%
improvement in OPT lifetime with respect to scenarios with 4
sinks. Given our set of sink sites, we do not expect that linear

improvement is possible. The route length and the overall

energy consumption do not halve when we double the number

of sinks. In addition, achieving linear improvements would

require sinks to be assigned (on average) to configurations

which perfectly partition data sources to the sinks. Such

perfect configurations are rare, if possible at all. Moreover,

if it were possible for sinks to transition only among this kind

of node-balanced configurations it would be challenging to

obtain good energy balancing. Energy balancing is in fact the

consequence of the fine tuning of the time spent by the sinks

in different configurations (including unbalanced ones) so that

all the nodes relay a similar amount of traffic over time and

the energy consumption is minimized.

For all protocols, increasing the number of sink sites re-

markably increases lifetime. For example, when 5 sinks can

visit 64 sink sites the lifetime is 150.1Ms. When restricted to

16 sink sites instead the lifetime is 82.42Ms. More sites allows

the protocol to choose among more configurations. Denser sink

sites allow the sinks to drain energy from all the different areas

in the network. We finally observe that both DIS and RND

produce higher lifetime increases as tmin decreases. (This is

particularly evident for RND.) The reason is that higher tmin

results in a coarser selection of the times spent in the various

configurations, and therefore in a worse energy balancing. In

addition, the toll to pay for having entered an “unfortunate”

configuration is paid for a longer time.

Beyond achieving improved network lifetime CEN and DIS

yield a more even distribution of nodal residual energy com-

pared to RND and STATIC (confirming they are able to better

distribute the load over different nodes over time). Ideally,

we would like the sinks to coordinately move, changing their

positions over time so that the energy is drained from all the

areas in the networks. CEN and DIS satisfactorily achieve

our goal. This is clearly shown in Figure 1 which displays

the residual energy of the nodes at network lifetime for a
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Figure 1. Residual energy at lifetime with 5 sinks in a 8 × 8 grid

given run in scenarios when 8 sinks can select among 64 sites

(performance does not significantly change when considering

different runs). A lighter color means a lower percentage

of residual energy in that area of the network. We observe

that CEN results in better load balancing that DIS, which

in turn improves over RND and STATIC. More precisely, at

lifetime CEN shows an impressive percentage of nodes with

very little energy left, a witness of its good energy drainage

balancing property. The fraction of nodes with less than 20%
(40%) residual energy is 52.5% (80%) in CEN. In DIS the

percentage of nodes with less than 20% of the initial energy

at lifetime is around 27%. The percentage of nodes with less

than 40% of the initial energy is 53%. These figures reduce

to 5.41% and 23.7% for RND, and to 1.75% and 3.5% for

STATIC. Mobility scheme and number of sinks both affect

route lengths. Tables III and IV display the average length

Table III
ROUTE LENGTH FOR SINKS IN A 4 × 4 GRID

s CEN DIS RND STATIC

2 10.05 13.14 15.24 8.85
3 8.16 10.49 12.14 6.89
4 6.90 9.22 10.43 6.58
5 6.25 8.08 9.15 5.63
6 5.71 7.63 8.32 5.61
7 5.18 6.92 7.64 4.89
8 4.75 6.47 7.11 4.41

of the routes traversed by data packets. Increasing number of

sinks corresponds to shorter route lengths. This suggests that in

addition to increasing the network lifetime, deploying multiple

sinks enables lower latencies and decreased data funneling.

VI. CONCLUSIONS

This paper explores ways of deploying multiple mobile

data collectors for lifetime improvements in wireless sensor

networks. We defined two heuristics that solve the problem of

maximizing network lifetimes producing results remarkably
Table IV

ROUTE LENGTH FOR SINKS IN A 8 × 8 GRID

s CEN DIS RND STATIC

2 9.51 11.4 13.43 8.21
3 7.39 8.78 10.84 6.27
4 6.19 7.23 9.37 5.15
5 5.43 6.57 8.19 4.66

close to the optimal ones. Through experiments conclude that

coordinated and controlled mobility of the sinks is always

advantageous, yielding remarkable lifetime improvements over

all considered cases.
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